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Appearance of a Purely Singular Continuous 
Spectrum in a Class of Random 
Schr~idinger Operators 

F. Delyon ~ 
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We consider a discrete Schr6dinger operator on 12(Z) with a random potential 
decaying at infinity as [n] ~1/2. We prove that its spectrum is purely singular. 
Together with previous results, this provides simple examples of random 
Schr6dinger operators having a singular continuous component in its spectrum. 
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1. INTRODUCTION 

In this paper we study the discrete Schr6dinger operator on lZ(Z): 

(H~),,=~,,+~ +~, . . . . .  ~ + V(n) ~,, (1) 

where I/(n) is a random potential which decays at infinity as inl-1/z For 
the sake of simplicity we assume that 

v,~(n) = ,~ v, , (o)  
tnl ~/2 , n # 0 

Vo;(0) = )o Vo(o)) (2) 

where V~(co) are independent identically distributed random variables. 
Furthermore we assume that V~(co) is bounded. In Ref. 1 and 2 one 

can find general results for potentials decaying as inl-= at infinity. It is 
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proven that if e < 1/2 then for almost every realization of the potential the 
spectrum in [ - 2 ,  2] is pure point with eigenfunctions decaying at infinity 
as e x p ( - C  [n11-2~), whereas for e >  1/2, the spectrum in [ - 2 ,  2] is purely 
continuous; by a refinement due to Kotani 13/it is in fact purely absolutely 
continuous in this case. In the present case (c~ = 1/2) the model has a trans- 
ition from pure point spectrum to continuous spectrum(l'2): if 2 >  2~ the 
spectrum is almost surely pure point with eigenfunctions decaying as a 
power at infinity and for any interval K c  ] - 2 ,  2[ there exists 22(K) such 
that for Z < 22(K) the spectrum in K is almost surely purely continuous. 

The purpose of this paper is to prove by a refinement of an idea of 
Pastur (4~ that the spectrum is almost surely purely singular; thus when it 
has a continuous component it is a singular continuous one. 

We shall prove the following: 

T h e o r e m  1. Let V,,(oJ) be a sequence of bounded identically dis- 
tributed random variables satisfying E(Vn) = 0. Then with probability 1 the 
Schr6dinger operator on 12(Z), 

o v . ( o ) ,  

has no absolutely continuous spectrum. 

Using the previous results, this model provides us with a simple exam- 
ple of Schr6dinger operators having singular continuous spectrum. 

Romork 1. Since the potential goes to zero at infinity the spectrum 
of Ho~ consists of an essential spectrum which is [--2, 2] and possibly a 
discrete part outside this interval. We are thus left to prove that the spec- 
trum is singular inside [ - 2 ,  2] and from now the energy E of the eigen- 
value problem will be supposed to lie in this interval. 

Remark 2. Our proof does not rely on any ergodic theorem (when 
Pastur needs in fact the Oselede~ theorem) so that the hypothesis that the 
random variables are identically distributed can be easily weakened. 

Finally we prove a strengthening of Theorem 1 in the case where the 
random variables have a density on ~: 

T h e o r e m  2. With the hypothesis of Theorem t and assuming 
furthermore that { Vn}n~ ~ have a probability density on N, then the spec- 
tral measure of H is almost surely singular with respect to any given (not 
random) measure. 
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Proof of the Theorems. Let G,~(dE) be the spectral measure of H,o 
defined by 

Go~(dE) = �89 E~o(dE) lbo) + (31t E~o(dE) 1~5, ))  (3) 

where E,,(dE) are the spectral projections associated with H~o. From the 
spectral theorem, one knows that for any vector g in/2(Z), there exists for 
ao)-atmost every E, a solution of 

H,,$=E O (4) 

such that gO is in 12(Z). Thus if we want to prove that ergo(dE ) is singular 
we have to find a vector g in 12(Z) such that for ahnost every E (with 
respect to the Lebesgue measure in [ - 2 ,  2]) there is no solution of (4) 
with gO in 12(Z). This actually can be proved only with probability one on 
the potential, so that we have to prove that 

{3g ~ 12(2), such that for almost every co, then for almost every E, 

H~O=EO~g0612(7/)} (5) 

this is by Fubini's lemma, equivalent to 

{3gE/2(2~), s.t. for Lebesgue a.e. E, 3f2,., P(f2e) = 1, 

H,,jO = E0 ~ gO $12(Z) for any co in #2E} (6) 

where P is the probability measure on the potential. 
In the case of a stationnary potential (not decaying at infinity) Pastur 

used the Oselede~ theorem. This theorem together with Furstenberg's 
theorem ensures that for any energy, then for a.e. co: 

1 
H~O=EO=~ lira or lim 7-s, log(O~+O~+l)>O (7) 

n ~  J,-CO n ~  o o  Inl 

It then remains to choose g,, = 1/n for instance to get the result. Further- 
more Pastur noticed that since Oseledee's theorem holds for any energy, we 
have 

{3gr s.t. for all E, 3f2E, P ( O e =  1), 

H o ~ O = E ~  g0r for coe#2e} (8) 

which by Fubini's lemma provides us with 

{3g~ 12(2~), s.t. for P-a.e. co, ~F~o, #(Fo~)= 1, 

HoO=EO~gOr for e e r o }  (9) 
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for any given (non random) probability measure/l. (9) gives us that G~(dE) 
is singular with respect to #. Thus Pastur obtained that almost surely the 
spectral measure a~(dE) is singular with respect to any given measure #: 
Go(dE) is a singular measure (with respect to the Lebesgue measure) which 
has to "change rapidly" with co. 

In our case we are going to prove (8) in the case where the bounded 
random variables { Vi}i~z have a density on N which provides us with 
Theorem 2. More precisely, we need only two of them, say V o and V_ ~, 
have a density and the others having any common distribution. Now since 
the absolutely continuous part of the spectral measure is not affected by a 
local perturbation of tile potential (s) we get easily Theorem 1. Thus we are 
left to prove (8) in the case where the independent bounded random 
variables Vi have the same distribution for i in ] -  co, - 2 [  u [1, + co[ and 
a distribution having a density r(V) dV for i = 0, - t. 

We first rewrite (4) as 

o)\,/,,,,_ , /  (lo) 

and we shall prove later the following lemma: 

l . e m m a  1. For  any E, there exist C, e(E) strictly positive such that 

Ii~r~[I2 > Cn ~(e) (12) 

with a probability p,, on co which goes to 1 as n goes to infinity. 

Now since M s are 2 x 2 matrices with 

we have 

det M; = t 

t i1~2'!I  = J!M,,II 

Thus there exist a unit vector u such that 

1 
lJ/'~uJt = I[hTl~EI (13) 
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and now for any other unit vector u' we have 

]det(u, u')] = Idet(M~u, M~u')l 

which yields 

- ' Ide t (u ,  u ' ) l  ~ IIm,,ll ,/2 IIM,,u II ~ [l~r,,ll'/2 ~ 

625 

(14) 

(15) 

01 0 J 
tan 01 = ~ o '  tan 0 - 1 - 0  2 

which yields 

l 
tanO~=V~ V - E - ( t a n O  ~)-J (18) 

Since Vo and V_~ are bounded, there exists a constant K such that 

0 <  c~01 < K  (19) 
a0_l  

P(OleA1,0_IeA 1)<~supP(OleE1) 
0 i 

Then we have 

for any (~b_ 1 , 0 -2 )  does not lie within two angular sectors A-1 and At1 of 
order 2C' 1/4r/ ~/4. 

The next step is to check that with a probability near 1 on V o and 
V 1, the relation (10) does not map any point of A lk_)z]/-1 in A, w A'~ so 
that for any initial condition (0o, 0 , )  at least (16) or (17) will hold. 

Let us set 

Together with Lemma 1, (15) ensures that with probability p,, 

~112~ "~ {~l /2Fl~/2{~l t2  -1- Jlt 2 ] (0~+ j + v,,,j / ,~ ~v'o- v" 1,, n > l  (16) 

for any (0o, ~'1) that does not lie within two angular sectors AI and A] 
with angular measure of order 2C-1/4n ~/4 

Using once more that det M i =  l, one can easily check that with 
probability p,, 

(02,,_1+02,,)>C'~/2n~/2(02,+~2_2), n > 2  (17) 
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where E1 is an interval of angular measure smaller than IA,t + K I A _ ~ h .  

Now for given 0 ~ the absolutely continuous measure of Vo and V ~ 
induces an absolutely continuous measure on 01; thus 

Furthermore (19) ensures that P(O~ ~ El) is continuous as a function of 0 
and thusP(01eA 1 ,0  l ~ 3 _ 1 )  goes to zero as lEll goes to zero, that is, as 
n goes to infinity. The same proof works also for the others pairs A,, 
A'_~ ..... thus we finally obtain that with a probability q. which goes to 1 as 
n goes to infinity, (16) or (17) holds for each (Oo, ~ ) .  

Furthermore (17) can be easily replaced by 

c"l/2n~/2(d~ 2 + dl2) 
OL,,+ ~ + 4'?_,,> , ~ , o  ~,~ (21) 

for some strictly positive C". 
It then follows by Borel-Cantelli lemma that there exists a strictly 

increasing sequence nk such that 

V(~0, ~ ) ,  ~ k  + ~;k+1~ + ~ / _ . k _ l + ~ , , > C ( c o ) n ~ / 2 ( , : , 2 a _ t / / ~ ) 2  k t~'o--  (22) 

with C(~o) almost surely nonzero. 
We now choose 

1 
g,k = g - , , ,  = g - , k - t  = g,,k + i = kl/2 +~ (23) 

and g,, = 0 otherwise, which gives the result for some 5, assuming Lem- 
rea l .  | 

P r o o f  O[ the  l_omma. The proof relies on the Lagrange method: 
given an energy E in ] - 2 ,  2[, the equation 

has two independent solutions cos kn and sin kn,  where k is defined by 

E = 2 cos k (24) 

In the equation (10) we make the change of variables 

( O . + l ) = ( c o s k ( n + l )  s i n k ( n + l ) ~ ( A ~  (25) 
t)~ J \ coskn sinkn ] \ B ~ J  
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and we obtain 

where 

V,, /'cos kn sin kn 
M'. = 1 + (sin k) Inl ~/2 \ _cos  2 kn 

sin 2 kn ) 
- s i n  kn cos kn 

gt~ = 1 + ~  L (27) 
I n l ' -  

Now since (25) is not singular for k r 0, rc we have only to estimate the 
norm of 

- '  I~ ' (28) M,,= M~ 
i=l 

We set 

X,,- M,,M,, and JT, = Tr J(,~ (29) 

37~n ,/2 is then a norm for the matrix ~17I,, and we have for fixed p 

n ( 1 - ~  n T T 

2 ~ Vi Tr(TiX,,_p ) 
= J?,,-p + n ~  i = : n - - p +  1 

+ ~ ~ V'J//Tr(TiX,,_pTr) 
i = n - - p + l  j = n - - p + l  n 

(30) 

+ 2 v'V/Tr(T~T/X, p)+O ~ "Y~,,_p (31) 
i ~ t r - - p +  l n 

i > / 

In the last equality, we have to notice that p is fixed and that V; is bounded 
which justifies the notation 0(i/n3/2). 

It follows that we have 

log J(n = log X~_p + I1,+0 (32) 
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where 

Yn = 
2 ZT=.-p+~ V, Tr(T,X._p)  

//1/2 "J~n --p 

1 Z n = n _ p + l  Z j = n - - p +  1 V,V;Tr(T,X.-p TT) + -  
ti X n -  p 

2 Y'.7=.-p + ,,,>j V~ Vj Tr(T, TjX._p) 
+ 

n X n  - p 

! IET=.-p+~ VgTr(T~X~-p)~ 2 
- (33) 

Thus there exists a constant Cp such that 

log X.,p >~ ~ Yip -- Cp (34) 
i=1 

In order to prove that )?,,p increases with n, we estimate ~( Yip I ~(~ 1)p) and 
~(Y~p I ~(i_l)p) where ~ .  holds for the a algebra generated by {VJ}I<-J-<,, 
and ~ ( Y [ ~ )  denotes the conditional expectation of Y given { Vj}I.< j~..  

From (33) we have 

'P Tr T;X(i 1 . T~ 1 V2~J=( i 1)p+l ~_( yip l G,_1)p)= .-- �9 _ 
lp a~f (i-  1)p 

_ 2V2Z.}"=(, l,p+l (Tr T;X(, lip) 2 (35) 

ip -Y~(il,p 

where V 2 stands for ~(V 2) and where we have used that E(V~)= 0 and the 
independence of Vi and Vj for i r  j. 

By the definition of the T[s (27) 

and 

1 ip 
- ~ Tr( TjX(,_ ~)pT~) 
P j=(i l )p+l  

1 ip 

p sin2k/ ~ (uj, X(i l)pUj) 
=(i  l ) p + l  

- ~ (Tr T;XIi 1)p) 2 
P /=(i 1)p+l 

1 ip 
- - - -  2t(i 1)puj-) p sin 2 k ~ (uj, "" , , .2 

j ~ ( i  1 ) p + t  

(36) 

(37) 



Purely Singular Spectrum in Random Schr6dinger Operators 629 

where uj = (cos kj, sin kj) and U~ is a unit vector orthogonal to up Then for 
all k r  ~, the right-hand side of (36) [respectively (37)] goes (uniformly 
in X u_ 1)p) to (1/2 sin 2 k) J(u-  1)p [respectively, (1/8 sin 2 k)(J~u n p -  4)] as 
p increases: these limits are easily obtained by taking an average over the 
angle rather than a summation over j and using the fact that X, is sym- 
metric with determinant one. 

Thus we can choose a finite p, such that 

V 2 
E(Ysp]~ ~}p)>>.6sin2k i for all i (38) 

Furthermore 

4V 2 ~'P (Tr TjX u_ 1)p) 2 -~ ~CP 

~(~Pl~{i I)P)~TJ={i--I)P+ , X~i-1)p 

Setting now 

2 V 2 C; (39) 
< ~ q  i3/2 

'.2_' 
Z , ,=  22 Yip-E(Yip I ~ i_ l )p)  (40) 

i - -1  

we have 

~(z~) = E[E(Z~ I 4,,-~)~)] 

: E(Z~_ ~)+ E[~{(Y,,~- E(Y,,~ J~,,_ ,}~)~ I ~ , , - , )~ } ]  

2 V  2 ~ 1  ,, 
.G< sin2 k i + Cp (41) 

i = l  

So using the Tchebichev inequality we get 

V 2 
P (I~ X,,p + Cp ~ ~ i l2~m2 k) 

i = 1  

= P Yip <~ 
"/=1 i=1 i12~n2  

n V 2 ~< ~ V 2 

~<P Z n +  ~ i6sin2 k i l 2 s i n  2 
\ i = 1  i = 1  

2V 2 n 1 
C o ' + 

1 V4  (.1,]2 (42) 
144 s i ~ k  \i_~ T/  

822/40/5-6-2 
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So that there exist constants C, D such that 

P( '2~p <<. Cn v2/~12 ~in2 k)) <~ D sinZ---~k (43) 
log n 

which gives Lemma 1 with ~ = V2/(12 sin 2 k). 
Furthermore since the right-hand side of (43) decays at infinity like 

(log n) - i ,  the subsequence nk in the proof of the theorems have to increase 
faster than an exponential; one can choose nk = 2 k2. 
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